Algebra properties for Sobolev spaces- Applications to semilinear PDE's on manifolds
نویسندگان
چکیده
In this work, we aim to prove algebra properties for generalized Sobolev spaces W ∩L on a Riemannian manifold, whereW s,p is of Bessel-typeW s,p := (1+L)(L) with an operator L generating a heat semigroup satisfying off-diagonal decays. We don’t require any assumption on the gradient of the semigroup. To do that, we propose two different approaches (one by a new kind of paraproducts and another one using functionals). We also give a chain rule and study the action of nonlinearities on these spaces and give applications to semi-linear PDEs. These results are new on Riemannian manifolds (with a non bounded geometry) and even in the Euclidean space for Sobolev spaces associated to second order uniformly elliptic operators in divergence form.
منابع مشابه
Sobolev Spaces on Lie Manifolds and Regularity for Polyhedral Domains
We study some basic analytic questions related to differential operators on Lie manifolds, which are manifolds whose large scale geometry can be described by a a Lie algebra of vector fields on a compactification. We extend to Lie manifolds several classical results on Sobolev spaces, elliptic regularity, and mapping properties of pseudodifferential operators. A tubular neighborhood theorem for...
متن کاملSobolev Spaces on Lie Manifolds and Polyhedral Domains
We study Sobolev spaces on Lie manifolds, which we define as a class of manifolds described by vector fields (see Definition 1.2). The class of Lie manifolds includes the Euclidean spaces Rn, asymptotically flat manifolds, conformally compact manifolds, and manifolds with cylindrical and polycylindrical ends. As in the classical case of Rn, we define Sobolev spaces using derivatives, powers of ...
متن کاملAbstract Hardy-Sobolev spaces and interpolation
Hardy-Sobolev spaces and interpolation N. Badr Institut Camille Jordan Université Claude Bernard Lyon 1 UMR du CNRS 5208 F-69622 Villeurbanne Cedex [email protected] F. Bernicot Laboratoire de Mathématiques Université de Paris-Sud UMR du CNRS 8628 F-91405 Orsay Cedex [email protected] October 19, 2010 Abstract The purpose of this work is to describe an abstract theory of Ha...
متن کاملar X iv : m at h / 02 11 30 5 v 1 [ m at h . O A ] 1 9 N ov 2 00 2 COMPLEX POWERS AND NON - COMPACT MANIFOLDS
We study the complex powers A z of an elliptic, strictly positive pseudodifferential operator A using an axiomatic method that combines the approaches of Guillemin and Seeley. In particular, we introduce a class of algebras , " extended Weyl algebras, " whose definition was inspired by Guillemin's paper [11]. An extended Weyl algebra can be thought of as an algebra of " abstract pseudodifferent...
متن کاملOptimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کامل